

UH-60A Airloads Wind Tunnel Data Update

Airloads Workshop
Tom Norman
August 18, 2011

Outline

- Background
- Efforts since February 2011
 - Database
 - PIV/Blade Displacement
 - Other activities
- Data availability
- Near-term plans

Background

- Airloads wind tunnel test completed May 2010
- Six test phases
 - Parametric Sweeps
 - 1-G Level Flight
 - Airloads Flight Matching
 - DNW Wind Tunnel Matching
 - High Advance Ratio
 - Particle Image Velocimetry (PIV)
- Initial post-test analysis focused on
 - Stall sweep
 - Speed sweep
 - High advance ratio

Efforts Since February 2011

- 5 conference papers presented
 - 3 at AHS Forum (May 2011)
 - Test overview "Full-Scale Wind Tunnel Test of the UH-60A Airloads Rotor"
 - CFD correlation "Correlating CFD Simulation with Wind Tunnel Test for the Full-Scale UH-60A Airloads Rotor"
 - High advance ratio "Experimental Investigation and Fundamental Understanding of a Slowed UH-60A Rotor at High Advance Ratios"
 - 2 at AIAA Applied Aero meeting (June 2011)
 - PIV technique "PIV Measurements in the Wake of a Full-Scale Rotor in Forward Flight"
 - Blade displacement technique "Blade Displacement Measurements of the Full-Scale UH-60A Airloads Rotor"

Efforts Since February 2011

- Data evaluation/reduction efforts
 - Blade pressures and integrated parameters
 - Completed pressure evaluations for 6 complete runs (including stall and speed sweeps)
 - Reviewed "bad" pressures, threw out bad revs, re-integrated when possible
 - Blade root motion measurements (laser, crabarm)
 - Reviewed/corrected blade motion calibration coefficients
 - Identified rotation effect on crabarms as well as transducer drift (affects mean)

Airloads Database – To Do

- Blade Pressures and Integrated Parameters
 - Complete pressure evaluation/integrations of remaining runs
- Rotor Performance
 - Evaluate rotor balance drift for high advance ratio runs and correct data if necessary
- Blade Structural Loads
 - Incorporate coupled calibration coefficients (minimal effects on full-RPM data points)
 - Evaluate CF effects on a few gages
 - Evaluate electrical coupling between normal bending and torsion at Station 70
- Blade Root Motion Measurements
 - Incorporate corrections to account for RPM effects and transducer drift (affects mean only)

Blade Displacement

- What was measured?
 - Simultaneous images from multiple cameras of radial and spanwise array of retro-reflective targets on each blade
 - From images, extracting
 - Location of blade section chord lines along the blade span in the rotor coordinate system
 - Accuracies to 0.2 deg (pitch, flap, lag)

Blade Displacement Status and Plans

- Data acquisition and analysis
 - Initial analysis of priority data points complete
 - Follow-on data processing (including refinements) ongoing
 - Improving automation/robustness of image processing (high adv ratios are challenging)
 - Developments for elastic bending and twist underway
 - Analyzing non-rotating checkout data to validate data analysis procedure
 - Comparison of experimental data with computational result to begin shortly
 - Will help to refine data analysis methods
 - Still need to define data requirements and archiving
- Publication schedule
 - 2010 AHS Specialists' Conference: Paper describing test technique
 - 2011 AHS Annual Forum: One test condition for UH-60A overview paper
 - 2011 AIAA Applied Aerodynamics Conference: Paper describing image processing and showing selected results for one test condition
 - 2012 AHS Future Vertical Lift Aircraft Design Conference: Paper describing image processing and showing selected results

PIV Data

- What was measured?
 - 3-D velocity field in stationary cross-flow plane at approximately 90 deg azimuth, covering outer 50% of rotor radius
 - From velocity field, will extract
 - Tip vortex core size
 - Rotor wake geometry (tip vortex trajectory in laser sheet)
 - Vortex strength and vortex structure

PIV Status and Plans

- All PIV data have been processed using IDT *proVISION* software with approximate calibration, single pass processing with constant window size.
- Results of *Preliminary Processing* sufficient to reveal all features of interest in the flow (tip vortices of multiple blades in each flow field, trim tab wake, blade wake).
- Final Processing will use more sophisticated PIV software: *DaVis* (LaVision), and *InSight* 3G (TSI). Plan for final processing TBD.
- PIV Post-Processing
 Investigating use of planar fit of measured velocity field to analytical vortex model to provide key vortex characteristics.
- Publication schedule
 - 2011 AHS Annual Forum: Provided one test condition (one blade azimuth) for inclusion in UH-60A overview paper
 - 2011 AIAA Applied Aerodynamics Conference: Presented paper describing PIV installation, sample PIV data
 - 2012 AHS Annual Forum: Paper with analysis of tip vortex trajectory in measurement plane

Efforts Since February 2011

- Investigated numerous approaches for measuring asbuilt blade contours
 - Most concerned about blade deflections during measurements
 - Will likely use white-light scanning method (later this year)
- Began effort to understand discrepancies between blade tab measurements for flight test and wind tunnel test
 - Investigating differences between measurement tools and methods
 - Sikorsky provided very useful information to help define tab deflection definition for CFD analysis
- Completed preparations for and have begun (this week) control stiffness testing

Control Stiffness Testing

Data Availability

- Have investigated 2 methods for providing data to Airloads workshop participants
 - Direct database access to key run/points (similar to TRENDS for flight test)
 - Provides user access to all data for key points
 - Requires setup of NASA database server
 - Must follow NASA/Army IT security regulations
 - Must have NASA/Army management acceptance of IT risks
 - IT security procedures proposed and requests made for NASA and Army approvals
 - Data files for key run/points (similar to PdB files for flight test)
 - Provides user with pre-specified data only
 - Does not require NASA database server or extra IT approvals
 - Can be implemented in near-term

Data Files for Airloads Workshop

- One file for each data point
 - Header
 - Constants
 - Means (dimensional and non-dimensional)
 - 54 total tunnel, performance, fuselage, and control loads
 - Time Histories (dimensional)
 - 391 total, including 286 at 2048/rev and 105 at 256/rev
 - 1 rev/parameter averaged over all acquired revs
 - Some measure of repeatability needed either std dev at each azimuth or max std dev for entire rev
 - List of pressures used in integrations

Data Files for Airloads Workshop

- Section loads
 - 3 section loads at each radial station
 - Two time histories for each section load
 - Section airloads calculated for every sample and then averaged over 128 revs
 - Provides easy determination of std dev
 - Section airloads calculated using averaged pressures
 - Allows addition of corrected pressures (eliminating bad revs on specific channels) to provide better estimate of section loads
 - Will be especially valuable when we started having transducer problems (later test points)
 - Time history methods are identical with same inputs

Data Repeatability

- Std dev at each azimuth or max std dev for entire rev?
 - Std dev at each azimuth will double data file size (to approx. 20 MB)

Deep Stall Case, Run 45, Pt 38

Proposed Data for Near-term Release

- Speed sweep (8 points), Ct/s=0.09, Mtip=0.650, representative moments
 - mu = .15, .20, .24, .30, .35, .37, .385, .40
- Stall/collective sweep (12 points), mu=0.30, alpha=0, Mtip=0.625, zero moments
 - Collective = 0.9, 2.5, 4.1, 5.9, 6.9, 8.0, 9.1, 10.4, 11.1, 11.5, 11.9, 12.3

Proposed Process for Data Release

- Send email to Tom Norman (tom.norman@nasa.gov) requesting data release form
- Fill out/sign form and return
 - Data limitations similar to flight test data
 - Will include request for other related documents (data format summary, parameter list, derived parameter equations, rotor properties, blade CAD file, LRTA and 40x80 surface definitions)
- Data to be distributed using encrypted zip files
 - Password to be sent separately (phone call?)
- Data expected to be available within next 1-2 months

Near-Term Plans

- Continue data evaluation/correction and database updates
- Continue analysis of PIV and Blade Displacement data
- Complete control stiffness testing, contour measurements, and tab deflection measurements
- Finalize data release requirements and distribute data as requested
- Begin to look at other parts of database
 - Structural load correlation with CFD/CSD
 - Wind tunnel/flight test comparisons
 - NASA/Army AHS papers TBD